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a b s t r a c t

We propose several connectedness measures built from pieces of variance decompositions, and we
argue that they provide natural and insightful measures of connectedness. We also show that variance
decompositions define weighted, directed networks, so that our connectedness measures are intimately
related to key measures of connectedness used in the network literature. Building on these insights,
we track daily time-varying connectedness of major US financial institutions’ stock return volatilities in
recent years, with emphasis on the financial crisis of 2007–2008.
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‘‘When you can measure what you are speaking about, and
express it in numbers, you know something about it; but when
you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind: it may
be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science’’.

[Kelvin (1891)]

‘‘None of us anticipated the magnitude of the ripple effects’’.
[Merrill Lynch President Gregory Fleming
on the financial crisis of 2007–2008,
as reported in Lowenstein (2010)]

1. Introduction

Connectedness would appear central to modern risk measure-
ment and management, and indeed it is. It features prominently
in key aspects of market risk (return connectedness and portfolio
concentration), credit risk (default connectedness), counter-party
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and gridlock risk (bilateral andmultilateral contractual connected-
ness), and not least, systemic risk (system-wide connectedness). It
is also central to understanding underlying fundamental macroe-
conomic risks, in particular business cycle risk (intra- and inter-
country real activity connectedness).

Perhaps surprisingly, then, connectedness remains a rather
elusive concept, inmany respects incompletely defined and poorly
measured. Correlation-based measures remain widespread, yet
they measure only pairwise association and are largely wed
to linear, Gaussian thinking, making them of limited value
in financial-market contexts. Different authors chip away at
this situation in different ways. The equi-correlation approach
of Engle and Kelly (2012), for example, effectively focuses on
average pairwise correlation. The CoVaR approach of Adrian and
Brunnermeier (2011) and the marginal expected shortfall (MES)
approach of Acharya et al. (2010) and Acharya et al. (2012)
go beyond pairwise association, tracking association between
individual-firm and overall-market movements, in one direction
or the other. The equi-correlation, CoVaR and MES approaches
are certainly of interest, but they measure different things, and a
unified framework remains elusive.

To address this situation, in this paper we develop and apply a
unified framework for conceptualizing and empirically measuring
connectedness at a variety of levels, frompairwise through system-
wide, using variance decompositions from approximating models.
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We are proud and grateful to be able to build upon the pioneering
insights of Halbert L. White Jr., in several ways ranging from the
general to the specific. Generally, for example, our connectedness
measures are very much linked to and built upon his tradition of
dynamic predictivemodeling undermisspecification.1 Specifically,
in addition, our approach is tightly linked to the graphical
(i.e., network) models in which he made pioneering contributions
to understanding causal linkages.2

Weproceed as follows. In Section 2we introduce the conceptual
framework and population connectedness measures. In Section 3
we treat connectedness estimation. In Section 4 we relate our
framework and connectedness measures to both the network
literature and the systemic risk literature; the relationships turn
out to be direct and important. Finally, in Section 5, we apply our
framework to study connectedness at all levels among a large set
of return volatilities of US financial institutions during the last
decade, including during the financial crisis of 2007–2008. We
conclude in Section 6.

2. Population connectedness

Our approach to connectedness is based on assessing shares of
forecast error variation in various locations (firms, markets, coun-
tries, etc.) due to shocks arising elsewhere. This is intimately related
to the familiar econometric notion of a variance decomposition,
in which the forecast error variance of variable i is decomposed
into parts attributed to the various variables in the system.We de-
note by dHij the ij-th H-step variance decomposition component;
that is, the fraction of variable i’sH-step forecast error variance due
to shocks in variable j. All of our connectedness measures – from
simple pairwise to system-wide – are based on the ‘‘non-own’’, or
‘‘cross’’, variance decompositions, dHij , i, j = 1, . . . ,N , i ≠ j. The
key is i ≠ j.

2.1. The population data-generating process

Consider an N-dimensional covariance-stationary data-
generating process (DGP) with orthogonal shocks: xt = Θ(L)ut ,
Θ(L) = Θ0 + Θ1L + Θ2L2 + · · ·, E(utu′t) = I . Note that Θ0
need not be diagonal. All aspects of connectedness are contained
in this very general representation. In particular, contemporane-
ous aspects of connectedness are summarized in Θ0, and dynamic
aspects in {Θ1, Θ2, . . .}. Nevertheless, attempting to understand
connectedness via the potentiallymany hundreds of coefficients in
{Θ0, Θ1, Θ2, . . .} is typically fruitless. One needs a transformation
of {Θ0, Θ1, Θ2, . . .} that better reveals and more compactly sum-
marizes connectedness. Variance decompositions achieve this.

2.2. The population connectedness table

The simple Table 1, which we call a connectedness table, proves
central for understanding the various connectednessmeasures and
their relationships. Its main upper-left N × N block contains the
variance decompositions. For future reference we call that upper-
left block a ‘‘variance decomposition matrix’’, and we denote it by
DH
= [dHij ]. The connectedness table simply augments DH with a

rightmost column containing row sums, a bottom row containing
column sums, and a bottom-right element containing the grand
average, in all cases for i ≠ j.

The off-diagonal entries of DH are the parts of the N forecast
error variance decompositions of relevance from a connectedness

1 See, for example, White (1994).
2 See, for example, White and Chalak (2009).
Table 1
Connectedness Table Schematic. See Text for details.
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perspective; in particular, they measure pairwise directional con-
nectedness. Hence we define the pairwise directional connectedness
from j to i as

CH
i←j = dHij . (1)

Note that in general CH
i←j ≠ CH

j←i, so there are N2
− N separate

pairwise directional connectedness measures. They are analogous
to bilateral imports and exports for each of a set of N countries.
Sometimes we are interested in ‘‘net’’, as opposed to ‘‘gross’’,
pairwise directional connectedness. We immediately define net
pairwise directional connectedness as CH

ij = CH
j←i − CH

i←j.
3 There are

N2
−N
2 net pairwise directional connectedness measures, analogous

to bilateral trade balances.
Now consider not the individual elements of DH , but rather its

off-diagonal row or column sums. Take the first row, for example.
The sum of its off-diagonal elements gives the share of the H-step
forecast error variance of variable 1 coming from shocks arising in
other variables (all other, as opposed to a single other). Hence we
call the off-diagonal row and column sums, labeled ‘‘from’’ and ‘‘to’’
in the connectedness table, the total directional connectedness
measures. That is, we define total directional connectedness from
others to i as

CH
i←• =

N
j=1
j≠i

dHij , (2)

and total directional connectedness to others from j as

CH
•←j =

N
i=1
i≠j

dHij . (3)

There are 2N total directional connectedness measures, N ‘‘to
others’’, or ‘‘transmitted’’, and N ‘‘from others’’, or ‘‘received’’,
analogous to total exports and total imports for each of a set of
N countries. Just as with pairwise directional connectedness, we
are sometimes interested in net total effects. We define net total
directional connectedness as CH

i = CH
•←i − CH

i←•. There are N net
total directional connectedness measures, analogous to the total
trade balances of each of a set of N countries.

Finally, the grand total of the off-diagonal entries in DH

(equivalently, the sum of the ‘‘from’’ column or ‘‘to’’ row)measures

3 We see gross and net connectednessmeasures as complements, not substitutes,
but we sometimes find net measures of interest and sometimes focus on them in
our subsequent empirical analysis. Such net measures are precisely analogous to a
trade balance, whether bilateral or multilateral – exports of future uncertainty, less
imports of future uncertainty – and they are informative and worthy of study, just
as is a trade balance in international economics. We hasten to add, of course, that
for some purposes one might be interested in examining individual imports and
exports, not just their difference.
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total connectedness. We have4

CH
=

1
N

N
i,j=1
i≠j

dHij . (4)

There is just one total connectedness measure, as total connected-
ness distills a system into a single number analogous to total world
exports or total world imports. (The two are of course identical.)

The connectedness table makes clear how one can begin with
the most disaggregated (e.g., microeconomic, firm-level, pairwise-
directional) connectedness measures and aggregate them in
various ways to obtain macroeconomic economy-wide total
directional and total connectedness measures. Different agents
may be relatively more interested in one or another of the mea-
sures. For example, firm i may be maximally interested in how
various others connect to it (CH

i←j, for various j), or how all oth-
ers connect to it, CH

i←•. In contrast, regulators might be more con-
cernedwith identifying systemically important firms j, in the sense
of large total directional connectedness to others from j, CH

•←j, and
theymight also bemore concernedwithmonitoring total (system-
wide) connectedness CH .

2.3. Correlated shocks

In the orthogonal reduced-form system discussed thus far,
the variance decompositions are easily calculated, because or-
thogonality ensures that the variance of a weighted sum is
simply an appropriately-weighted sum of variances. But reduced-
form shocks are rarely orthogonal. To identify uncorrelated struc-
tural shocks from correlated reduced-form shocks, one must,
inescapably, make assumptions. This is true, for example, with
the Cholesky-factor vector autoregression (VAR) identifications
popularized by Sims (1980), in any of the scores of subsequent
‘‘structural’’ VAR identifications, in the generalized variance de-
composition (GVD) framework of Koop et al. (1996) and Pesaran
and Shin (1998), and of course in structural dynamic stochastic
general equilibrium environments as surveyed for example by Del
Negro and Schorfheide (2011).

Identifying assumptions are just that – assumptions – and
any set of identifying assumptions may fail. Results based on
traditional Cholesky-factor identification, for example, may be
sensitive to ordering, as Cholesky-factor identification amounts
to assumption of a particular recursive ordering. Many models,
moreover, are exactly identified as opposed to over-identified, so
that the identifying restrictions cannot be tested. The upshot is that
reasonable people may disagree as to their preferred assumption,
and they often do.We have nothing new to add; onemustmake an
assumption andmove forward conditional upon (and cognizant of)
the assumption.

Our own preferences run toward Cholesky and related iden-
tifications. They are appealing for our purposes because of their
comparatively agnostic data-based spirit. We often find that total
connectedness, our most important system-wide summary mea-
sure, is robust to Cholesky ordering; that is, the range of total
connectedness estimates across orderings is often quite small.
Moreover, Swanson and Granger (1997) provide useful methods
for testing proposed Cholesky orderings, just as Bernanke (1986)
earlier provides tests of structural identifying restrictions.5

4 Note that we construct total connectedness by taking off-diagonal DH variation
relative to total DH variation (N), so that CH is expressed as a decimal share, as with
total directional connectedness ‘‘from’’. For the same reason itmay also be desirable
to scale total directional connectedness ‘‘to’’ by N .
5 We reserve their exploration, however, for future work.
Nevertheless, there is an intrinsic appeal to order-invariance,
which enhances the appeal of GVDs as opposed to Cholesky-based
variance decompositions.6 GVDs were introduced in Pesaran and
Shin (1998), which builds on Koop et al. (1996). Like Cholesky-
based variance decompositions, GVDs rely on a largely data-based
identification scheme, but they are invariant to ordering. In a
Cholesky-factor orthogonalization, the first variable in the ordering
is affected contemporaneously only by its own innovations, the
second variable in the ordering is affected contemporaneously
only by innovations of the first and second variables, and so on.
GVDs, in contrast, effectively treat each variable as ‘‘first in the
ordering’’. They do so not by attempting to orthogonalize shocks,
but rather by allowing for correlated shocks while simultaneously
accounting for the correlation among them observed historically,
under a normality assumption.

Mechanically, the H-step generalized variance decomposition
matrix DgH

= [dgHij ] has entries

dgHij =
σ−1jj

H−1
h=0

(e′iΘhΣej)2

H−1
h=0

(e′iΘhΣΘ ′hei)
, (5)

where ej is a selection vector with jth element unity and zeros
elsewhere, Θh is the coefficient matrix multiplying the h-lagged
shock vector in the infinite moving-average representation of
the non-orthogonalized VAR, Σ is the covariance matrix of the
shock vector in the non-orthogonalized VAR, and σjj is the jth
diagonal element of Σ .7 Because shocks are not necessarily
orthogonal in the GVD environment, sums of forecast error
variance contributions are not necessarily unity (that is, row sums
of Dg are not necessarily unity).8 Hence we base our generalized
connectedness indexes not on Dg , but rather on D̃g

= [d̃gij], where

d̃gij =
dgijN
j=1 dgij

. By construction
N

j=1 d̃
g
ij = 1 and

N
i,j=1 d̃

g
ij = N .

Using D̃g we can immediately calculate generalized connectedness
measures.

3. Sample connectedness

Clearly C depends on the set of variables xwhose connectedness
is to be examined, the predictive horizon H for variance decompo-
sitions, and the dynamics A(L), sowewrite C(x,H, A(L)).9 In reality
A(L) is unknown and must be approximated (e.g., using a finite-
ordered vector autoregression). Recognizing the centrality of the
approximating model adopted, we write C(x,H, A(L),M(L; θ)),
where M(L; θ) is a dynamic approximating model with finite-
dimensional parameter θ . One hopes thatM(L; θ) is in some sense
close to the true population dynamics A(L) for some pseudo-true
parameter configuration θ0, but there is of course no guarantee.

In addition, and crucially, we want to allow for time-varying
connectedness, which allows us to move from the static, uncondi-
tional, perspective implicitly adopted thus far, to a dynamic, con-
ditional perspective. Time-varying A(L), and hence time-varying

6 Other order-invariant identifications are also possible, such as the symmetric
matrix square root, which we hope to explore in future work. We thank Chris Sims
for alerting us to that possibility.
7 Note the typo in the original paper of Pesaran and Shin (1998), p. 20. They write

σ−1ii but should have written σ−1jj .
8 We now drop the ‘‘H ’’ superscripts, because from this point onward they are

not needed for clarity.
9 The same holds, of course, for the various directional connectedness measures,

so we use C(x,H, A(L)) as a stand-in for all our connectedness measures.
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connectedness, may arise for a variety of reasons. A(L) may evolve
slowly with evolving tastes, technologies and institutions, or it
may vary with the business cycle, or it may shift abruptly with fi-
nancial market environment (e.g., crisis, non-crisis). Whether and
how much A(L) varies is ultimately an empirical matter and will
surely differ across applications, but in any event it would be fool-
ish simply to assume it is constant. Hence we allow the connec-
tion table and all of its elements to vary over time, and we write
Ct(x,H, At(L),M(θt)).

Finally, everything we have written thus far refers to the
population, whereas in reality we have available only finite samples
of observed data. That is, we must use estimated approximating
models, so we writeCt(x,H, At(L),M(θ̂t)), where the data sample
runs from t = 1, . . . , T . To economize on notation we henceforth
drop At(L), because it is determined by nature rather than a choice
made by the econometrician, relying on the reader to remember its
relevance and simply writingCt(x,H,M(θ̂t)). In what follows we
successively discuss aspects of x, H and M(θ̂t).

3.1. The reference universe, x

Connectedness measurements are defined only with respect to
a reference universe, namely the set of x’s defining the object of
interest to be studied. Choice of x has important implications for
the appropriate approximating model; for example, xmay (or may
not) be strongly serially correlated, conditionally heteroskedastic,
or highly disaggregated. Connectedness measurements generally
will not, and should not, be robust to choice of reference universe.

Three sub-issues arise, which we call the ‘‘x object’’, the ‘‘x
choice’’, and the ‘‘x frequency’’. By x object we refer to the type of x
variable studied, typically either returns or return volatilities. By x
choicewemean preciselywhich (and hence howmany) x variables
are chosen for study.10 By x frequencywe refer to the observational
frequency of the x variables (daily, monthly, . . .). In this paper the
x object is the natural log of realized equity return volatility, the x
choice is approximately fifteenmajor US financial institutions, and
the x frequency is daily.11

3.2. The predictive horizon, H

Certain considerations in certain contexts may help guide se-
lection of connectedness horizon, H . For example, in risk manage-
ment contexts, one might focus on H values consistent with risk
measurement considerations. H = 10, for example, would cohere
with the 10-day value at risk (VaR) required under the Basel ac-
cord. Similarly, in portfolio management contexts one might link
H to the rebalancing period.

The connectedness horizon is important particularly because it
is related to issues of dynamic connectedness (in the fashion of
contagion) as opposed to purely contemporaneous connectedness.
To take a simple pairwise example, shocks to j may impact the
forecast error variance of i onlywith a lag, so that Ci←j may be small
for smallH but nevertheless larger for largerH .12 Intuitively, as the
horizon lengthens there may be more chance for connectedness
to appear. Thus, in a sense, varying H lets us break connectedness

10 In future work, Bayesian estimation may be useful not only to promote parsi-
mony in large-N environments, but also to reduce the probability of spuriously-
inflated connectedness measurements for large N.
11 Taking logs converts realized volatilities to approximate normality, as empha-
sized in Andersen et al. (2003).
12 Such dynamic phenomena, and the rich patterns that are possible, are closely
related to aspects of multi-step Granger causality, as treated for example in Dufour
and Renault (1998); Dufour and Taamouti (2010), and the references therein.
into ‘‘long-run’’, ‘‘short-run’’, etc.More precisely, asH lengthenswe
obtain a corresponding sequence of conditional prediction error
variance decompositions for which the conditioning information
is becoming progressively less valuable. In the limit as H → ∞,
we obtain an unconditional variance decomposition.

In this paper we anchor on a horizon of H = 12 days, but we
also examine a range of nearby H values. In a sense this provides
a ‘‘robustness check’’, but as we argued above, there is no reason
why connectedness should be ‘‘robust’’ to H . Instead we view
examination of a menu of H values simply as an interesting part
of a phenomenological investigation.

3.3. The approximating model, M(θt)

A first issue is choice of approximatingmodel class. As discussed
previously, many choices are possible, ranging from traditional
data-driven VAR approaches, to so-called ‘‘structural’’ VARs, to
fully-articulated dynamic stochastic general equilibrium (DSGE)
models.

A second issue is how to allow for time-varying connected-
ness, which is potentially of central interest for risk measurement
and management (e.g., over the business cycle, or during financial
crises). But connectedness is simply a transformation of model pa-
rameters, so allowance for time-varying connectedness effectively
means allowance for time-varying parameters in the approximat-
ing model. Linear models with time-varying parameters are ac-
tually very general nonlinear models, as emphasized in White’s
Theorem (Granger, 2008).13

As with choice of approximating model class, many choices are
possible to allow for time-varying parameters. A simple and pop-
ular scheme involves use of a rolling estimation window. To track
time-varying connectedness in real-time, for example, we might
use a uniform one-sided estimation window of width w, sweep-
ing through the sample, at each period using only the most
recent w periods to estimate the approximating model and calcu-
late connectedness measures.14 We write Ĉt(x,H,Mt−w:t(θ̂)). The
rolling-window approach has the advantages of tremendous sim-
plicity and coherence with a wide variety of possible underlying
time-varying parameter mechanisms. Rolling windows do, how-
ever, require choice of window width w, in a manner precisely
analogous to bandwidth choice in density estimation. In this pa-
per we focus on a VAR(3) approximating model with a one-sided
rolling estimation window of w = 100 days, but we also explore
robustness to alternative choices of w.

4. Relationships to the network and systemic risk literatures

Our connectedness measures turn out to be intimately related
both to modern network theory and to modern measures of
systemic risk. We now consider both.

4.1. Network connectedness

Networks are everywhere in modern life, from power grids
to Facebook. Not surprisingly, research on networks has grown
explosively in recent years.15 A networkN is composed ofN nodes

13 Interestingly, it seems that ‘‘White’s Theorem’’ was not published by White.
Instead, the theorem is attributed to White in Granger (2008).
14 Alternatively,wemight explicitly specify a process for the dynamically evolving
model parameters, as is commonly done in a state-space framework using the
Kalman filter for estimation.
15 Newman (2010); Jackson (2008) and Easley and Kleinberg (2010) provide
fine introductions. Seminal contributions to the characterization, detection and
estimation of causal links in networks range from the early work by Clark Glymour
and Judea Pearl inter alia, as distilled in works such as Glymour et al. (1987, 1993)
and Pearl (2000), to more recent work by White and Chalak (2009), inter alia.
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and L links between nodes. The distance sij between two nodes
i and j is the smallest number of links that must be traversed
to go from i to j. N is connected if sij ≤ N − 1,∀i, j, and
one is naturally led to think about measures of the strength
of network connectedness. That is, presumably two connected
networks need not be equally strongly connected. But then deep
questions arise. Just what is strength of network connectedness?
Is it a pairwise or system-wide concept, or both, or neither? How,
if at all, might it be related to the notion of connectedness that we
have proposed independently and thus far emphasized, based on
variance decompositions?

To approach the issue of measuring network connectedness,
we need to analyze the mathematical structure of networks a bit
more deeply. A network is simply an N × N adjacency matrix A
of zeros and ones, A = [Aij], where Aij = 1 if nodes i and j are
linked, and Aij = 0 otherwise. Note that A is symmetric, because if
i and j are connected, then so too must be j and i. Mathematically
(i.e., algebraically), the adjacency matrix A is the network, and
all network properties are embedded in A. Hence any sensible
connectedness measure must be based on A. Nevertheless, there
is no single, all-encompassing measure, and several have been
proposed.16 The most important and popular by far – as well as
the most useful for our purposes – are based on the idea of node
degree (and a closely-related concept, network diameter), towhich
we now turn.

4.1.1. Degree and diameter
A node’s degree is its number of links to other nodes. Immedi-

ately the degree of node i is

δi =

N
j=1

Aij =

N
j=1

Aji. (6)

We can of course examine the pattern of degrees across nodes.
The degree distribution is the probability distribution of degrees
across nodes. It is a discrete univariate distribution with support
0, . . . , (N − 1), and aspects of its shape (location, scale, skewness,
tail thickness, etc.) are closely linked to aspects of network behav-
ior.17As regards the aspect of network behavior that concerns us
– connectedness – the location of the degree distribution is ob-
viously key, and the standard location measure is of course the
mean. Hence the mean of the degree distribution (mean degree)
has emerged as a canonical benchmarkmeasure of overall network
connectedness. The larger themean degree, the greater is the over-
all network connectedness.

The just-described adjacency matrix and degree distribution
might more precisely be called ‘‘1-step’’, as the links are direct.
However, even if i is not directly linked to j, i may be linked to
k, and k to j, so that i and j are linked at a distance of two steps
rather than one. The distinction between 1-step and multi-step
adjacency emphasizes distance. Recall that, as introduced earlier,
the distance sij between two nodes i and j is the smallest number
of links that must be traversed to go from i to j. Distance is a
two-node property, in contrast to degree, which is a single-node
property. Closely related to the idea of distance is the idea of
diameter. The diameter of a network is the maximum distance
between any two nodes, smax = maxi,jsij. Diameter is another
canonical benchmark measure of overall network connectedness.
The smaller the network diameter, the greater is the overall
connectedness.

16 Bech and Atalay (2011) and Adamic et al. (2010) provide good reviews and
financial applications of network-theoretic connectedness measures.
17 The support of 0, . . . , (N − 1) stems from our adoption of the standard
convention of writing Aii = 0,∀i.
A beautiful large-N approximation relates network diameter,
network mean degree and network size in Erdős–Rényi random
networks (Erdős and Rényi, 1959)18:

smax ≈
lnN

ln E(δ)
. (7)

This ‘‘network diameter grows only as lnN ’’ approximation is
typically introduced as a mathematically-precise characterization
of the ‘‘small-world’’ phenomenon, namely that diameters tend to
be small even for huge networks.19 For our purposes, however, it is
useful because it emphasizes in a very precise way the importance
of the mean degree as a measure of network connectedness. As
we shall now see, our earlier-proposed connectedness measures
are intimately related to certain network node degrees and mean
degree.

4.1.2. Variance decompositions as weighted, directed networks
Interestingly, it turns out that our connectedness measures,

early variants of which were proposed in Diebold and Yılmaz
(2009) independently of the network literature, are closely related
to aspects of network connectedness. Indeed we are now in
a position to notice that variance decompositions are networks.
More precisely, the variance decomposition matrix D, which
defines our connectedness table and all associated connectedness
measures, is a network adjacency matrix A. Hence network
connectednessmeasuresmay be used in conjunctionwith variance
decompositions to understand connectedness among components.

The networks defined by variance decompositions, however,
are rathermore sophisticated than the classical network structures
sketched thus far. First, the adjacency matrix A (variance decom-
position matrix D) is not filled simply with 0–1 entries; rather, the
entries are weights, with some potentially strong and others po-
tentially weak. Second, the links are directed; that is, the strength
of the ij link is not necessarily the same as that of the ji link, so the
adjacency matrix is generally not symmetric. Third, there are con-
straints on the row sums of A. In particular, each row must sum to
1 because the entries are variance shares. Hence we write the di-
agonal elements as Aii = 1 −

N
j=1
j≠i

Aij. Note in particular that the

diagonal elements of A are no longer 0.
Weighted, directed versions of the earlier-introduced network

connectedness statistics are readily defined, including degrees,
degree distributions, distances and diameters. For example, node
degrees are now obtained not by summing zeros and ones, but
rather by summing weights in [0, 1]. Moreover, there are now
‘‘to-degrees’’ and ‘‘from-degrees’’, corresponding to row sums and
column sums.20 The from-degree of node i is δ

from
i =

N
j=1
j≠i

Aij.

The from-degree distribution is the probability distribution of from

18 See, for example, Newman (2010), p. 420. Erdős–Rényi random networks
have the simplest imaginable probabilistic model of link formation: independent
Bernoulli trials with fixed probability θ . Hence the degree distribution is binomial,
f (δ) =


N−1

δ


θ δ(1 − θ)N−1−δ . Erdős–Rényi random networks have emerged as

a canonical benchmark, but they are sometimes poor descriptions of real-world
networks, due for example to strategic aspects of link formation such as clustering,
which refers to the fact that in real networks two ‘‘people’’ with a common ‘‘friend’’
are more likely to be friends than two randomly-selected people. Interestingly,
however,Watts and Strogatz (1998) have shown that the ‘‘network diameter grows
only as lnN ’’ approximation nevertheless holds in networks with small clusters of
linked nodes with just a few long-range links.
19 For example, for N = 300, 000, 000 (roughly the US population) and mean
degree E(δ) = 20, network diameter is still small (smax ≈ 6). That is, even if every
person in the US is linked to only twenty others on average, then the approximate
maximum number of steps needed to link any two people is nevertheless only six.
20 Our to-degrees and from-degrees are often called ‘‘out-degrees’’ and ‘‘in-
degrees’’ in the network literature.
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degrees across nodes. It is a univariate distribution with support
on [0, 1]. Similarly, the to-degree of node j is δto

i =
N

i=1
i≠j

Aij. The

to-degree distribution is the probability distribution of to degrees
across nodes. It is a univariate distribution with support on [0,N].

By now the relationships between our earlier-defined connect-
edness measures and those used in the network literature should
be apparent. First, our total directional connectedness measures
Ci←• and C•←j are precisely the from-degrees and to-degrees, re-
spectively, associatedwith the nodes of theweighted directed net-
work D. Second, our total connectedness measure C is simply the
mean degree of the network D (to or from—it is the same either
way, because the sum of all row sums must equal the sum of all
column sums).

4.2. Systemic risk measurement

There is no single definition of systemic risk, but the defining
characteristic is that systemic risk involves aspects ofmarket-wide
connectedness, one way or another. Here we introduce two of the
most important systemic risk measures, and we show how our
network-based connectedness measures are related.

4.2.1. Marginal expected shortfall and expected capital shortfall
Marginal expected shortfall (MES) for firm j is

MES j|mkt
T+1|T = ET


rj,T+1|C


rmkt,T+1


, (8)

where rmkt,T+1 denotes the overall market return, and C

rmkt,T+1


denotes a market-wide extreme event, such as the market return
falling below some threshold.MES j|mkt tracks the sensitivity of firm
j’s return to a market-wide extreme event, thereby providing a
simple market-based measure of firm j’s fragility.

Ultimately, however, we are interested in assessing the
likelihood of firmdistress, and the fact that a firm’s expected return
is sensitive to market-wide extreme events – that is, the fact that
its MES is large – does not necessarily mean that market-wide
extreme events are likely to place it in financial distress. Instead,
the distress likelihood should depend not only on MES, but also
on how much capital the firm has on hand to buffer the effects
of adverse market moves. This consideration raises the idea of
expected capital shortfall (ECS), which is closely related to, but
distinct from, MES. ECS is the expected additional capital needed
in case of a systemic market event. Clearly ECS should be related
to MES, and Acharya et al. (2010) show that in a simple model the
two are linearly related,

ECS j|mkt
T+1|T = a0j + a1jMES j|mkt

T+1|T , (9)

where a0j depends on firm j’s ‘‘prudential ratio’’ of asset value
to equity as well as its debt composition, and a1j depends on
firm j’s prudential ratio and initial capital. Building on the theory
of Acharya et al. (2010); Brownlees and Engle (2011) propose and
empirically implement ECS j|mkt

T+1|T as a measure of firm j’s systemic
risk exposure to the market at time T , with overall systemic risk
then given by

N
j=1 ECS

j|mkt
T+1|T .

21

4.2.2. CoVaR and ∆CoVaR
In the previous section we introduced MES and ECS, which

measure firm systemic risk exposure by conditioning firm events
on market events. Here we introduce CoVaR, which works in the
opposite direction, measuring firm systemic risk contribution by
conditioning market events on firm events.

21 Note that ECS has the virtue of being readily aggregated across firms.
First recall the well-known concept of value at risk (VaR). Firm
j’s 1-step-ahead conditional VaR at level p is the value of VaRp,j

T+1|T
that solves

PrT

rj,T+1 < −VaRp,j

T+1|T


= p. (10)

It is a natural next step, following Adrian and Brunnermeier (2011),
then to define firm j’s 1-step-ahead ‘‘CoVaR’’ at level p conditional
on a particular outcome for firm i, say C


ri,T+1


, as the value of

CoVaRj|i
T+1|T that solves

PrT

rj,T+1 < −CoVaRj|i

T+1|T | C

ri,T+1


= p. (11)

Because C

ri,T+1


is not in the time-T information set, CoVaR will

be different from the regular time-T conditional VaR. The leading
choice of conditioning outcome, C


ri,T+1


, is that firm i exceeds its

VaR, or more precisely that ri,T+1 < −VaRp,i
T+1|T . As such, CoVaR

is well-suited to measure tail-event linkages between financial
institutions.

A closely-related measure, ∆CoVaRj|i
T+1|T (read ‘‘Delta CoVaR’’),

is also of interest. It measures the difference between firm-j VaR
when firm i is ‘‘heavily’’ stressed and firm-j VaR when firm i
experiences ‘‘normal’’ times. More precisely,

∆CoVaRj|i
T+1|T = CoVaRj|VaR(i)

T+1|T − CoVaRj|Med(i)
T+1|T , (12)

where CoVaRj|VaR(i)
T+1|T denotes firm-j VaR when firm i’s return

breaches its VaR, and CoVaRj|Med(i)
T+1|T denotes firm-j VaR when firm

i’s return equals its median.
A direct extension lets us progress to the more interesting

case of firm i’s overall systemic risk contribution, as opposed to
just firm i’s contribution to firm j. We simply set j = mkt , so
that ∆CoVaRmkt|i

T+1|T then measures the difference between market
VaR conditional on firm i experiencing an extreme return, and
market VaR conditional on firm i experiencing a normal return.
Hence ∆CoVaRmkt|i

T+1|T measures the contribution of firm i to overall
systemic risk,

N
i=1 ∆CoVaRmkt|i

T+1|T .

4.2.3. Network connectedness, MES and CoVaR
The MES and CoVaR approaches address certain aspects of

connectedness, as they track association between individual-firm
and overall-market movements. Moreover, both MES and CoVaR
are weighted and directional, just as with our connectedness
measurement framework. For example, CoVaRj|i

T+1|T tracks effects
from i to j, whereas CoVaRi|j

T+1|T tracks effects from j to i, and
in general CoVaRj|i

T+1|T ≠ CoVaRi|j
T+1|T . Hence one suspects that

MES and CoVaR should be related to our various connectedness
measures for weighted directed networks, yet simultaneously,
MES and CoVaR measure different things.

The tension is resolved by noting that our from- and to-degrees
measure aspects of systemic risk similar to those tracked by
MES and CoVaR, respectively. From-degrees measure exposures
of individual firms to systemic shocks from the network, in
a fashion precisely analogous to MES j|mkt

T+1|T . To-degrees measure
contributions of individual firms to systemic network events,
in a fashion precisely analogous to ∆CoVaRmkt|i

T+1|T . Moreover, our
total degree aggregates firm-specific systemic risk across firms,
providing a naturalmeasure of total system-wide systemic risk not
unlike total ECS.

Our framework, then, unifies MES and CoVaR insofar as it
makes clear that they are closely related to different directional
aggregations of a certain weighted directed network. But it also
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goes farther, insofar as it starts with greater granularity, furnish-
ing information at the pairwise level, and it finishes with greater
aggregation, furnishing information at the network-wide level,
which moreover is consistent regardless of whether one aggre-
gates ‘‘from’’ or ‘‘to’’.

5. Connectedness of US financial institutions

Thus far we have introduced tools for connectedness mea-
surement and emphasized their relationship to the structure of
weighted directed networks. We now put those tools to work, us-
ing them to monitor and characterize the evolution of connected-
ness among major US financial institutions before and during the
2007–2008 financial crisis. Understanding such financial connect-
edness is of interest not only in terms of understanding financial
crises, but also in terms of understanding the business cycle, as the
financial system’s health has important implications for real eco-
nomic health.

We remain agnostic as to how connectedness arises; rather,
we take it as given and seek to measure it correctly for a wide
range of possible underlying causal structures. Obviously there
are tradeoffs, but we prefer an approach that potentially achieves
much under minimal assumptions, in contrast to a more deeply
structural approach that in principle could achieve even more, but
only under heroic assumptions.

We proceed in four steps. First, in Section 5.1, we describe the
data that we use to measure financial institution connectedness.
Next, in Section 5.2, we perform a full-sample (static) analysis,
in which we effectively characterize average, or unconditional,
connectedness. This is of intrinsic interest, and it also sets the
stage for Section 5.3,whereweperforma rolling-sample (dynamic)
analysis of conditional connectedness. Our ultimate interest
lies there; we monitor high-frequency (daily) connectedness as
conditions evolve, sometimes gradually and sometimes abruptly.
Finally, in Section 5.4, we ‘‘zoom in’’ on financial institution
connectedness during the global financial crisis of 2007–2008.

5.1. Firm-level stock return volatility data

Financial institutions are connected directly through counter-
party linkages associated with positions in various assets, through
contractual obligations associated with services provided to
clients and other institutions, and in many other ways. High-
frequency analysis of financial institution connectedness therefore
might seem to require high-frequency balance sheet and other
information, which is generally unavailable. Fortunately, however,
stock market returns and return volatilities are available, which
reflect forward-looking assessments of many thousands of smart,
strategic and often privately-informed agents as regards precisely
the relevant sorts of connections. We use that data to measure
connectedness and its evolution.22

Westudy volatility connectedness, for at least two reasons. First,
if volatility tracks investor fear (e.g., the volatility index, ‘‘VIX’’,
traded on the Chicago Board Options Exchange, is often touted as
an ‘‘investor fear gauge’’), then volatility connectedness is the ‘‘fear
connectedness’’ expressed by market participants as they trade.23
We are interested in the level, variation, paths, patterns and

22 Some take issue with market data, and certainly we would not argue that all
markets are perfect at all times — far from it. But we do feel strongly that it is
harder to fool markets than to fool regulators. Other leading frameworks also take
a market-based approach, as for example with marginal expected shortfall and
CoVaR. Hautsch et al. (2012) also make good use of market-based information.
23 The VIX, short for ‘‘volatility index’’, is traded on the Chicago Board Options
Exchange. It tracks the market volatility implied by traded S&P 500 options.
Table 2
US Financial Institution Detail. Com Bank denotes a commercial bank, and Inv Bank
denotes an investment bank. Market capitalizations are in billions of US dollars.
Fannie Mae and Freddie Mac were placed into government conservatorship on
September 7, 2008, and AIG began government ownership on September 17, 2008.

Institution Ticker Business Market Cap.
12/29/06 12/31/09

J.P. Morgan JPM Com Bank 169 171
Wells Fargo WFC Com Bank 121 137
Bank of America BAC Com Bank 241 131
Citigroup C Com Bank 274 76
US Bancorp USB Com Bank 64 43
Bank of New York Mellon BK Com Bank 30 34
PNC Group PNC Com Bank 22 24
American Express AXP Credit Cards 74 49
Goldman Sachs GS Inv Bank 86 86
Morgan Stanley MS Inv Bank 85 40

Fannie Mae FNM Mortgages 59 1.3
Freddie Mac FRE Mortgages 47 0.9
AIG AIG Insurance 187 4

clustering in precisely that fear connectedness. Second, volatility
connectedness is of special interest because we are particularly
interested in crises, and volatility is particularly crisis-sensitive.

Volatility is latent and hence must be estimated. We use
realized volatility, which has received significant attention in
recent years.24 For a given firm on a given day, we construct
daily realized return volatility using high-frequency intra-day
data from the Trade and Quote (TAQ) database. In particular, we
calculate daily realized volatility as the sum of squared log price
changes over the 78 5-min intervals during trading hours, from
09:00–12:00 and 13:00–16:30.

We treat realized volatility as the object of direct interest, as
in Andersen et al. (2003).25 This is appropriate because for the
large, heavily-traded firms that we examine, five-minute sampling
is frequent enough largely to eliminate measurement error, yet
infrequent enough such that microstructure noise (e.g., due to
bid–ask bounce) is not a concern. In addition, and importantly,
realized volatility actually is an object of direct interest, traded in
the volatility swap markets, in contrast to underlying quadratic
variation or any other object that realized volatility may or may
not be construed as estimating.

Volatilities tend to be strongly serially correlated—much more
so than returns, particularly when observed at relatively high
frequency. We capture that serial correlation using vector-
autoregressive approximatingmodels, as described earlier. Volatil-
ities also tend to be distributed asymmetrically, with a right skew,
and approximate normality is often obtained by taking natural log-
arithms. Hence we work with log volatilities. This is helpful not
only generally, as normality-inducing transformations take us into
familiar territory, but also specifically as we use generalized vari-
ance decompositions (Koop et al., 1996; Pesaran and Shin, 1998),
which invoke normality.

5.2. Static (full-sample, unconditional) analysis

Here we study stock return volatilities for thirteen major US
financial institutions that survived the crisis of 2007–2008. In
Table 2 we list the firms, tickers, market capitalization before and
after the crisis, and critical episodes/dates during the crisis. Our

24 For surveys see Andersen et al. (2010, 2013).
25 This contrasts with an alternative approach that views realized volatility not
as the direct object of interest, but rather as an estimate of underlying quadratic
variation. In that case one might want to acknowledge estimation error explicitly,
as in Hansen and Lunde (2014).
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Table 3
Full-Sample Connectedness Table. The sample is May 4, 1999 through April 30, 2010, and the predictive horizon is 12 days. The ij-th entry of the upper-left 13 × 13 firm
submatrix gives the ij-th pairwise directional connectedness; i.e., the percent of 12-day-ahead forecast error variance of firm i due to shocks from firm j. The rightmost
(FROM) column gives total directional connectedness (from); i.e., row sums (from all others to i). The bottom (TO) row gives total directional connectedness (to); i.e., column
sums (to all others from j). The bottommost (NET) row gives the difference in total directional connectedness (to–from). The bottom-right element (in boldface) is total
connectedness (mean ‘‘from’’ connectedness, or equivalently, mean ‘‘to’’ connectedness).

AXP BAC BK C GS JPM MS PNC USB WFC AIG FNM FRE FROM

AXP 20.0 8.5 7.1 10.3 5.8 9.8 8.8 5.1 8.0 7.8 3.2 2.6 3.0 80.0
BAC 8.3 19.1 6.0 10.6 5.8 8.0 7.4 6.1 7.1 9.2 4.2 3.5 4.6 80.9
BK 8.4 8.3 18.8 8.4 6.2 9.3 8.5 5.7 8.4 8.3 4.2 2.4 3.0 81.2
C 9.5 9.6 5.4 20.4 4.9 8.7 7.8 5.2 7.0 8.0 5.4 3.5 4.7 79.6
GS 8.2 8.6 6.8 7.6 22.1 8.8 13.3 4.0 6.0 7.6 2.4 1.9 2.6 77.9
JPM 10.2 8.6 7.1 10.6 6.2 18.8 9.5 5.2 7.8 7.3 3.6 2.5 2.6 81.2
MS 9.2 8.3 7.1 8.9 9.8 9.7 20.5 4.2 5.5 7.1 3.4 2.8 3.6 79.5
PNC 7.7 8.8 7.4 8.5 4.6 7.6 6.6 18.1 7.6 8.8 5.2 4.2 4.9 81.9
USB 9.3 9.9 7.6 9.9 5.7 8.7 6.4 5.4 20.1 8.5 4.3 1.6 2.7 79.9
WFC 8.3 10.2 6.5 9.8 6.2 7.6 7.1 5.9 7.3 18.0 3.8 3.8 5.3 82.0
AIG 5.3 7.3 4.9 8.8 2.6 5.2 4.9 6.2 6.0 5.6 27.5 6.6 9.0 72.5
FNM 4.2 5.4 2.5 6.0 2.3 3.5 3.8 5.5 1.9 6.8 6.5 29.6 22.0 70.4
FRE 4.3 6.3 2.9 6.5 2.6 3.3 4.1 5.2 2.9 7.3 7.4 17.6 29.6 70.4

TO 92.9 99.7 71.3 106.1 62.7 90.2 88.2 63.7 75.5 92.2 53.8 53.1 68.1 78.3
NET 13.0 18.8 −9.9 26.5 −15.2 8.9 8.7 −18.2 −4.4 10.2 −18.7 −17.4 −2.3
sample includes seven commercial banks, two investment banks,
one credit card company, two mortgage finance companies and
one insurance company. Stocks of all firms except Fannie Mae and
Freddie Mac were included in the S&P500 prior to the sub-prime
crisis of 2007.

Our sample begins inMay 1999 and ends in April 2010. Starting
in 1999 allows us to include among our firms Goldman Sachs,
Morgan Stanley and US Bancorp, all of which went public in the
late 1990s. Our sample also spans several important financial
market episodes in addition to the crisis of 2007–2008.26 These
include the dot-com bubble collapse of 2000, the Enron scandal
of October 2001, and the WorldCom/MCI scandal and bankruptcy
of July 2002. Hence we can not only assess connectedness of our
firmsduring the crisis of 2007–2008, but also compare and contrast
connectedness during other episodes. We include AIG because it
was a major supplier of ‘‘financial insurance’’ in the 2000s, selling
credit default swaps (CDSs) through its AIG Financial Products arm
in London, which featured prominently in the financial crisis of
2007–2008.

The full-sample connectedness table appears as Table 3. Many
features are notable. Some blocks of high pairwise directional
connectedness appear, especially for the government-sponsored
enterprises (Freddie and Fannie) and various investment banks.
The diagonal elements (own connectednesses) tend to be the
largest individual elements of the table, but total directional
connectedness (from others or to others) tends to be much larger,
and total connectedness is a very high 78%. In addition, the spread
of the ‘‘from’’ degree distribution is noticeably less than that of the
‘‘to’’ degree distribution.

Let us discuss some of the features of the connectedness table
at greater length, beginning with the pairwise directional connect-
edness measures, ĈH

i←j, which are the off-diagonal elements of the
upper-left 13× 13 submatrix. The highest observed pairwise con-
nectedness is from Freddie Mac to Fannie Mae (ĈH

FNM←FRE = 22%).
In return, the pairwise connectedness from Fannie Mae to Fred-
die Mac (ĈH

FRE←FNM = 17.6%) is second-highest. The two mortgage
finance companies were viewed as twins by the markets, so it is
reasonable that their pairwise connectedness measures are quite
high.

The next largest pairwise directional connectedness is from
Morgan Stanley to Goldman Sachs (ĈH

GS←MS = 13.3%), the two

26 The 2007–2008 crisis may itself be split into the sub-prime/liquidity crisis of
2007 and the financial crisis of 2008.
top investment banks that survived the 2007–08 financial crisis.27
Although the connectedness from Goldman Sachs to Morgan
Stanley is also high (ĈH

MS←GS = 9.8%), in net terms the directional
connectedness takes place fromMorgan Stanley to Goldman Sachs
stock (ĈH

GS,MS = 3.5%).
The highest values of pairwise directional connectedness

among the commercial bank stocks are from Citigroup, on the
one hand, and Bank of America and J.P. Morgan, on the other
(ĈH

BAC←C = ĈH
JPM←C = 10.6%). The high value of pairwise connect-

edness from Citigroup to either Bank of America and/or J.P. Mor-
gan shows that, being the worst-hit institution among the top five
commercial banks, Citigroup spreads its troubles to other top com-
mercial banks.

As we have seen above, Fannie Mae and Freddie Mac are tightly
connected to each other, and tightly connected with AIG as well.
Those three institutions had many difficulties during the 2007–08
financial crisis and could have gone bankrupt had the US govern-
ment not intervened in financial markets in September 2008. Pair-
wise directional connectedness of the stocks of those institutions
with the stocks of other financial institutions tends to be much
lower than connectedness of other bank stocks in our sample.

The row sum of the pairwise connectedness measures results
in the total directional connectedness from others to each of
the thirteen stocks (see Section 2). In other words, the ‘‘FROM’’
columnmeasures the share of volatility shocks received fromother
financial firm stocks in the total variance of the forecast error for
each stock. By definition, it is equal to 100% minus the own share
of the total forecast error variance. As the own-effects (diagonal
elements of the matrix) range between 18% and 30%, the total
directional connectedness in the ‘‘FROM’’ column ranges between
70% and 82%.

Similarly, the column sum of all pairwise connectedness mea-
sures results in the corresponding stock’s total directional connect-
edness to others. As each stock’s contribution to others’ forecast
error variances is not constrained to add up to 100%, entries in the
‘‘TO’’ row can exceed 100%. While the financial stocks are largely
similar in terms of receiving volatility shocks from others, they are
highly differentiated as transmitters of volatility shocks to others.
The stark difference between the distributions of the two connect-
edness measures is clearly observed in their respective empirical

27 Because the other three investment banks ceased to exist in 2008, they are not
included in the full-sample connectedness table.
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Fig. 1. Full-Sample Total Directional Connectedness: Empirical Survivor Functions.
We plot the empirical survivor functions for total directional connectedness ‘‘to’’
others and ‘‘from’’ others. The predictive horizon for the underlying variance
decomposition is 12 days.

survivor functions presented in Fig. 1. Compared to the very steep
survivor function defined over a narrow range for the connected-
ness from others, the survivor function for the connectedness to
others is quite flat and defined over a wider range. Starting at a
minimum of 70% for Fannie and Freddie and increasing only up to
a maximum of 82% for Wells Fargo and PNC Group, the total di-
rectional connectedness from others is distributed rather tightly.
The total directional connectedness to others, on the other hand,
varies from a low of 53% for Fannie Mae, to all the way up to 106%
for Citigroup: a range of 53 points for the connectedness to others
compared to a range of just 12 points for the connectedness from
others.

The largest commercial banks (as of 2010) were the ones that
have the highest values of connectedness (all exceeding 90%) to
others. Being the most vulnerable among them, Citigroup gener-
ated a total directional connectedness measure of 106% to others.
Besides the top four commercial banks, American Express also gen-
erated significant (93%) volatility connectedness to others.

The difference between the total directional connectedness to
others and the total directional connectedness from others gives
the net total directional connectedness to others (ĈH

i = ĈH
•←i −

ĈH
i←•). In terms of the net total directional connectedness Citigroup

(26.5%) leads the way, followed by Bank of America (18.8%),
American Express (13%), and J.P. Morgan (8.9%). AIG (−19%), PNC
Group (−18%), Fannie Mae (−17%), Goldman Sachs (−15%) and
Bank of NewYorkMellon (−10%) are the financial institutionswith
negative values of net total directional connectedness to others.

Finally, with a value of 78.3% the measure of total connected-
ness among the thirteen financial stocks is higher than the total
connectednessmeasures we obtained in other settings, such as the
connectedness among different asset classes, or among interna-
tional stock markets. Given the large number of stocks included
in the sample, there is a high degree of connectedness for the full
sample. As we will see below there is always a high degree of con-
nectedness even during tranquil times. There is another reason for
the total connectedness for a set of financial stocks to be higher
than for a set of major national stock markets around the world or
for a set of asset classes in the US. As the institutions included in
our analysis are all operating in the finance industry, both industry-
wide and macroeconomic shocks affect each one of these stocks
oneway or the other. As some of these institutions and their stocks
are more vulnerable to external and/or industry-wide shocks than
others, they are likely to be transmitting these shocks to other fi-
nancial stocks, generating a higher degree of connectedness to oth-
ers. Obviously, to the extent that they have important implications
for the rest of the industry, idiosyncratic volatility shocks are also
transmitted to other stocks. For that reason, compared to a simi-
lar number of stocks from different industries, the connectedness
for a group of stocks in the finance industry is likely to be higher.
It is also likely to be higher compared to the connectedness for a
group of global markets, as these markets are not subject to com-
mon shocks as frequently as the stocks from the finance industry.28

5.3. Dynamic (rolling-sample, conditional) analysis

The just-completed analysis of full-sample connectedness pro-
vides a good characterization of ‘‘average’’ or ‘‘unconditional’’ as-
pects of each of the connectednessmeasures, yet by construction it
is silent as to connectedness dynamics. In this sub-section we pro-
vide a dynamic analysis by using rolling estimation windows. We
include the same thirteen financial institutions that we included in
our earlier full-sample analysis.29

In contrast to our theoretical discussion in Section 2, as well as
our static empirical analysis in Section 5.2, in whichwe progressed
from ‘‘micro to macro’’ – that is, from pairwise connectedness, to
total directional connectedness, to total connectedness – here it
proves useful to proceed in reverse order, from macro to micro.
We start our dynamic analysis with total connectedness, and then
we move to various levels of disaggregation (total directional and
pairwise directional). Finally, we also provide a brief assessment of
the robustness of our results to choices of tuning parameters and
alternative identification methods.

5.3.1. Total
In Fig. 2 we plot total volatility connectedness over 100-day

rolling-sample windows. From a bird’s-eye perspective, the total
connectedness plot in Fig. 2 has some revealing patterns. It has
two big cycles; one starting in late-2000 and ending in mid-2003,
whereas the second coincides with the development of the global
financial crisis from early 2007 all the way to the end of 2009. The
first cycle coincideswith the burst of the dot-com bubble, followed
by the downward spiral in the Nasdaq and other stock exchanges
and the 2001 recession. Even if the recession was over in early
2002, the MCI WorldCom scandal of mid-2002 kept the volatility
of the financial stocks and their connectedness high for another
year. The second cycle started at the end of February 2007.With the
first signs of the sub-prime crisis, the total volatility connectedness
index jumped up from a low of around 56% in February 2007 to
reach close to 90% in August 2007 and stayed above 80% until mid-
2009.

In between the two big cycles of the total connectedness lie
three smaller, but not necessarily negligible, cycles.Wewill discuss
each of these cycles alongwith the events that possibly led to them.
Before doing so, let us point to another fact that emerges from the
total connectedness plot. From 1999 to 2007, whenever the total
connectedness increased to a higher level, it always came back
down to the 55%–65% range as the sample windows are rolled to
leave that episode behind. Following the 2007–08 financial crisis,
the total connectedness index stayed well above this range as of
the end of April 2010, even though the financial crisis had ended
almost a year before.

Earlier on in our sample, developments in the tech-heavy
Nasdaq stock exchange influenced the behavior of the total
volatility connectedness among the financial stocks. Starting in
March 2000, the so-called dot-com bubble finally started to burst.
The bursting of the dot-com bubble had a serious impact on
the total volatility connectedness of financial stocks. In March

28 We have in mind a comparison with the total connectedness indexes reported
in Diebold and Yılmaz (2009, 2012).
29 In the next sub-section we specifically focus on the 2007–08 financial crisis
and include the remaining four institutions (Bear Stearns, Lehman Brothers, Merrill
Lynch and Wachovia), all of which ceased trading during the crisis.
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Fig. 2. Rolling Total Connectedness. The rolling estimation window width is 100 days, and the predictive horizon for the underlying variance decomposition is 12 days.
2000, the volatility connectedness index increased by 7 percentage
points. Despite short spells of recovery, troubles of the internet
stocks continued for some time and solid signs of an imminent
recession appeared on the horizon. The volatility in the bank
stocks increased rapidly over this period, and so did the total
volatility connectedness. From a low of 60% in early September, the
connectedness index increased to 75% by mid-January 2001 and
further to surpass 80% by early May 2001.

The Federal Reserve’s intervention, by way of lowering the
fed funds target rate by 2.5 percentage points in the first five
months of 2001, helped stem the decline in the Nasdaq and
other markets toward the second and third quarters of 2001.
Total connectedness declined to 71% by early September 2001.
However, 9/11 terrorist attacksworsenedmarket sentiment again.
Even though the markets were closed for a week after the
terrorist attacks, the total connectedness among the financial
stocks jumped 10 percentage points in the week it was reopened.
The total connectedness stayed around 80% as long as the data for
9/11 were included in the rolling-sample windows.

After the Enron scandal of late 2001, which did not have much
impact on financial stocks, another corporate scandal rocked the
US financialmarkets toward the end of June 2002. This time around
it was the bankruptcy of the MCI WorldCom, which was once the
second-largest long distance phone company in the US. Unlike the
Enron scandal, the MCI WorldCom scandal had a serious impact
on major bank stocks. All major US banks had credit positions
with MCI WorldCom and hence they all suffered losses when the
company declared bankruptcy.

Following the bankruptcy, the total connectedness among the
major financial institutions jumped from 72% to reach 85% in
July 2002, the highest level achieved from the beginning of the
sample. However, being an isolated source of loss for the banks,
the scandal’s impact on the financial system as a whole could be
contained. As of the end of 2002 total connectedness subsided very
quickly to pre-July 2002 levels. After a brief increase following the
invasion of Iraq inMarch 2003, the total connectedness declined to
58% in August 2003.

From August 2003 to February 2007, the total connectedness
index went through three smaller cycles, during which it moved
within the 55%–80% range. The first cycle lasted from August 2003
to March 2005; the second from April 2005 to February 2006; and
the third from March 2006 to February 2007. The three cycles
mostly coincide with the tightening of monetary policy and its
impact on the behavior of long-term interest rates.30

5.3.2. Total directional
The dynamic analysis of total connectedness gave us a clear un-

derstanding of the factors influencing the volatility connectedness

30 The link between the volatility connectedness and the long-term rates is
directly a result of the choices of the investors. Rising long-term interest rates reflect
optimism about the future economic performance. As they expect the growth to
pick up, investors sell more defensive stocks such as the financial stocks and instead
invest in manufacturing, energy and airlines sector stocks that are likely to benefit
most from an economic recovery.
across major US financial stocks over the 1999–2010 period. Keep-
ing this analysis in the back of our minds, we can now focus on the
dynamics of directional connectedness over time.

Fig. 3 presents the time series of total directional connectedness
(‘‘to’’ and ‘‘from’’ degrees) separately for each firm. The plots for
total directional connectedness ‘‘to’’ others are presented in the
upper panel, the plots for total directional connectedness ‘‘from’’
others are in the middle panel, and the plots for ‘‘net’’ total
directional connectedness to others are in the lower panel.

One of the first things one notices in Fig. 3 is the substantial
difference between the ‘‘to’’ and ‘‘from’’ connectedness plots: the
‘‘from’’ connectedness plots are much smoother compared to the
‘‘to’’ connectedness plots. The difference between the two direc-
tional connectedness measures is not hard to explain. When there
is a shock to the return volatility of an individual stock or a cou-
ple of stocks, this volatility shock is expected to be transmitted to
other stocks. Since individual institutions’ stocks are subject to id-
iosyncratic shocks, some of these shocks are very small and neg-
ligible, while others can be quite large. Irrespective of the size
of the volatility shock, if it is the stock of a larger institution or
a highly central institution (which has strong balance-sheet and
off-balance-sheet connections with other banks) that received the
volatility shock, then one can expect this volatility shock to have
even a larger spillover effect on stocks of other institutions. As the
size of the shocks vary as well as the size and centrality of the
institutions in our sample, the directional connectedness ‘‘to’’
others varies substantially across stocks over the rolling-sample
windows.

We have already emphasized that the institutions in our sample
are the largest ones in the US financial industry. As a result, none of
the stocks in our sample of thirteen institutions are insulated from
the volatility shocks to other institutions’ stocks. In other words,
they are expected to be interconnected. As a result, each one will
receive, in one form or the other, the volatility shocks transmitted
by other institutions. While the volatility shocks transmitted ‘‘to’’
others by each individual stock may be large, when they are
distributed among twelve other stocks the size of the volatility
shock received by each stock will be much smaller. That is why
there is much less variation in the directional connectedness
‘‘from’’ others compared to the directional connectedness ‘‘to’’
others in Fig. 3.

The difference between the directional connectedness ‘‘to’’ and
‘‘from’’ others is equal to the ‘‘net’’ directional connectedness to
others presented in the lower panel of Fig. 3. As the connectedness
‘‘from’’ others measure is smoother over the rolling-sample
windows, the variation in the plots for ‘‘net’’ connectedness to
others over the rolling-sample windows resembles the variation
in the plots for connectedness ‘‘to’’ others.

In Fig. 3 we observe that even though for each stock the ‘‘from’’
connectedness reached the highest levels during the 2007–08
crisis, we do not observe such a level shift in the ‘‘to’’ and ‘‘net’’
connectedness measures over the same period. This is so, perhaps
because idiosyncratic shocks have always hit individual stocks and
these shocks have been transmitted to other stocks. During the
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Fig. 3. Rolling Total Directional Connectedness. The rolling estimation window width is 100 days, and the predictive horizon for the underlying variance decomposition is
12 days.
2007–08 crisis these shocks became more frequent and each time
hit more stocks than before the crisis and hence were transmitted
to others in larger amounts than before.

To better evaluate the differences between the ‘‘to’’ and ‘‘from’’
directional connectedness, in Fig. 4 we plot the evolution of the
entire ‘‘to’’ and ‘‘from’’ degree distributions. Although, by definition,
themean ‘‘to’’ and ’’from’’ directional connectedness measures are
both equivalent to the total connectedness measure presented in
Fig. 2, each financial institution has rather different ‘‘to’’ and ‘‘from’’
directional connectedness. This implies that even though their
means are the same, ‘‘to’’ and ‘‘from’’ connectedness measures are
distributed quite distinctively. As emphasized earlier, the variation
in the ‘‘from’’ connectedness is much lower than the variation in
‘‘to’’ connectedness. Even the first and second quartile band for
the ‘‘to’’ connectedness is wider than the min–max range for the
‘‘from’’ connectedness.

Temporal changes in the dispersion and skew of the ‘‘to’’ and
‘‘from’’ connectedness in Fig. 4 may contain useful information.
For example, it appears that ‘‘from’’ connectedness gets not only
more dispersed but also more left-skewed during crises, and
simultaneously that ‘‘to’’ connectedness gets more right-skewed.
That is, during crisis times relatively more than non-crisis times,
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Fig. 4. Rolling Distribution of Total Directional Connectedness. We plot the time series of daily min, 25%, mean, 75%, and max of the distributions of ‘‘to’’ and ‘‘from’’ total
directional connectedness. The rolling estimation window width is 100 days, and the predictive horizon for the underlying variance decomposition is 12 days.
there are a few firms receiving very little, and a few firms
transmitting verymuch. Onemight naturallywant to identify firms
that are simultaneously ‘‘recipients of small’’ and ‘‘transmitters of
big’’ — those are the distressed firms potentially poised to wreak
havoc on the system.

5.3.3. Pairwise directional
In the analysis of the full-sample volatility connectedness in

Section 5.2, we discussed the importance of pairwise volatility
connectedness measures. In particular, we emphasized the im-
portance of pairwise connectedness as a measure of how volatil-
ity shocks are transmitted across financial institution stocks. The
relevance of the pairwise connectedness measures carries over to
the rolling-sample windows. Indeed, the analysis of pairwise con-
nectedness is even more crucial in the rolling-sample windows
case, because it helps us identify how the connectedness measures
across financial institution stocks vary over time. During times of
crises, individual stocks are likely to be subject to frequent volatil-
ity shocks. How these shocks led to volatility connectedness across
pairs of stocks is very crucial for any analysis of crises. Unfortu-
nately, given that there are 13 institutions in our sample from1999
to 2010, presenting plots of the volatility connectedness (for each
of the 156 pairwise directional measures, and 78 net pairwise di-
rectional measures) is an almost impossible task to accomplish in
the confines of this paper. Instead, when we are discussing the de-
velopment of the global financial crisis over time and the volatility
connectedness of the most troubled financial institutions during
the crisis, we will present and discuss the net pairwise connected-
ness measures during the most critical days of the crisis.

5.3.4. Robustness assessment
Finally, we conclude this section with a discussion of the

robustness of our results to the choice of the parameters of the
model. In particular, we plot the total connectedness for two
alternative identification methods (namely, the Cholesky factor
identification and the generalized identification), for alternative
values of the window width (in addition to w = 100 days, we
consider sample windows of 75 and 125 days), and for alternative
forecast horizons (in addition to H = 12 days, we consider 6
and 18 days). The results are presented in Fig. 5. In each plot, the
solid line is the total connectedness measure obtained through the
generalized identification for each value of H and w. In the case
of Cholesky factor identification, we calculate the connectedness
index for 100 random orderings of the realized stock return
volatilities. The gray band in each plot corresponds to the (10%,
90%) interval based on these 100 randomly-selected orderings.

In all subgraphs, the solid line that corresponds to the general-
ized identification-based total connectednessmeasure runs higher
than the gray band that corresponds to the Cholesky identification.
As the generalized identification treats each variable to be ordered
as the first variable in the VAR system, the total connectedness ob-
tained from the Cholesky-based identification is the lower bound
of the one obtained from the generalized identification. Neverthe-
less, in all subgraphs of Fig. 5, the two series move very much in
accordance over time, a strong indication of the robustness of our
total connectedness measures based on generalized identification.
It is also important to note that the (10%, 90%) interval based on
100 random orderings of the Cholesky-based total connectedness
is quite narrow. The ordering of the financial stocks in the VAR does
not reallymattermuch to follow the dynamic behavior of total con-
nectedness.

As the window length, w, is increased, the gap between total
connectedness based on the generalized identification and the one
based on the Cholesky identification increases. Both connectedness
measures are more wiggly when the window width is set to 75
days, but become smoother as we increase the window width to
125 days. Similarly, given the window length, a shorter forecast
horizon, H , implies a smaller gap between the generalized- and
Cholesky-based total connectedness measures.

To summarize, our robustness checks show that the dynamic
behavior of the total connectedness measures over the rolling-
sample windows is robust to the choice of alternative sample
window lengths, forecast horizons, identification methods and
orderings of stocks in the VAR system.

5.4. The Financial Crisis of 2007–2008

Having analyzed the dynamics of the various connectedness
measures over time, in this section we focus on the global financial
crisis, from 2007 through the end of 2008. The analysis of this
section shows how the measurement and daily monitoring of
connectedness can help us understand the developments at each
stage of the global financial crisis.

5.4.1. Total connectedness at various stages of the crisis
As of the end of 2006 there were already some, albeit weak,

signs of slowdown in the US real estate market.31 In late February
2007, the New Century Financial Corporationwas reported to have
troubles in servicing its debt. It was followed by the bankruptcy
of three small mortgage companies. These in turn worsened the
expectations about the real estate markets, the mortgage-backed
securities (MBS) markets as well as the stock market, and on the
last day of February 2007, the total connectednessmeasure jumped
by more than 17 points, the biggest increase on a single day. The

31 The Case–Shiller home price index for 20 metropolitan regions was 2% lower in
January 2007 compared to its historical high level reached in July 2006.
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Fig. 5. Robustness of Total Connectedness. We explore estimation window widths w of 75, 100 and 125 days, predictive horizons H of 6, 12 and 18 days, and a variety of
Cholesky orderings. In each subgraph, the solid line corresponds to our benchmark ordering, and the gray band corresponds to a [10%, 90%] interval based on 100 randomly-
selected orderings.
increase in the total connectednesswasnot due to a volatility shock
to the stock of a single financial institution; rather, all bank stocks
were affected by the recent developments in the MBS markets.

The churning in the MBS markets continued from February
until early June. New Century declared bankruptcy in April. In June
and July the markets became aware that big financial institutions
were not insulated from the debacle in the MBS. Bear Stearns had
to liquidate two of its hedge funds in July, leading to billions of
dollars of losses. From early March to late June the total volatility
connectedness index climbed gradually from 73% to 80% (see
Fig. 2).

In July 2007, the market for asset-backed commercial paper
(ABCP) showed signs of drying up, which eventually led to the
liquidity crisis of August 2007. From July 25 to August 10, the index
climbed 12 percentage points, to reach 88% (see Fig. 2). Reflecting
the developments over the period, the total connectedness index
doubled in the first eight months of 2007. After the liquidity crisis
of August 2007, it was obvious that the whole financial system
would be badly bruised by the collapse of the ABCP market.

After seven months of learning about the problems in MBS
markets and the ensuing liquidity crisis, next came the months of
reckoning with the consequences as nearly all US banks started
to announce huge losses. Even though it had already reached
its historical maximum, in late 2007 the volatility connectedness
index continued its upward move by several points.

As the MBS markets continued their descent in early 2008 Bear
Stearns’ financial position became untenable. Amid widespread
rumors of an eventual bankruptcy, its stock price declined rapidly
in mid-March, briefly increasing the tensions and volatility in the
markets. In an operation directed by the New York Fed, J.P. Morgan
acquired Bear Stearns onMarch 17, 2008, with financial assistance
from the Fed. As a result of the timely rescue operation, in the
final days of Bear Stearns the total connectedness of the surviving
thirteen banks showed an upward movement of only a couple of
percentage points.

In the summer of 2008 the tension in the stock market had
started to build up again as a result of Wachovia Bank’s troubles.
Thanks to Wachovia’s high volatility, the total volatility connect-
edness index increased, reaching to 88.5% in mid-July (see Fig. 2).

Meanwhile, regional banks smaller thanWachovia failed. These
were followed by news about the constantly deteriorating asset
positions of Fannie Mae and Freddie Mac. Before going bankrupt,
these two ‘‘government-sponsored enterprises’’ were taken into
government conservatorship in the first week of September.

Then came the most significant event in the unfolding of
the crisis. Following the news that Lehman would announce
huge losses in its latest financial statement, market participants
started selling Lehman Brothers’ stock. Despite the overwhelming
efforts over the weekend of September 13–14, no viable takeover
bid could be produced for Lehman Brothers by the interested
institutions. The US government did not want to step in to save
Lehman Brothers with taxpayers’ money. As soon as Lehman
Brothers declared bankruptcy on the morning of September 15,
2008 all hell broke out in financial markets around the world.
That same day, the weakest of the three remaining investment
banks, Merrill Lynch, announced it was being acquired by Bank of
America. The total volatility connectedness index increased further
to reach its maximum level of 89.2% (see Fig. 2).

After months of gyrations in the US financial system, the
volatility connectedness started to subside toward the end of
the first quarter of 2009. In March and April 2009, the total
connectedness measure fluctuated between 80%–85% for a while.
It started to fall only after the announcement of the stress test
results in May 2009. By October 2009 the index was down to 70%.
However, the news coming from Greece and the EU’s inability to
handle the Greek debt crisis in an orderly manner led to further
volatility in financial industry stocks in the EU and the US, which
prevented the volatility connectedness index from declining any
further. As of the end of our sample, the index was fluctuating
between 70% and 75%, a range that is above the levels the index
attained during tranquil times (see Fig. 2).

5.4.2. Pairwise connectedness of troubled financial institutions
So far we have discussed the behavior of the total connected-

ness and total directional connectedness measures for a group of
thirteen institutions along with the background of the events that
took place in the US financial markets during the financial crisis of
2007–2008. Our analysis did not include fourmajor banks that dis-
appeared during the crisis through bankruptcy or acquisitions. In
the remainder of this section, we analyze the total directional and
pairwise directional connectedness measures for these four insti-
tutions as well as for AIG and Morgan Stanley, two other troubled
institutions. In Table 4 we list the information on the four major
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Table 4
Detail for Financial Institutions Acquired or Bankrupted During the Crisis of 2007–2008. Inv Bank denotes an investment bank, and Com
Bank denotes a commercial bank. Market capitalizations are in billions of US dollars.

Market Cap.
Institution Ticker Business (12/29/2006) Important events

Bear Stearns BSC Inv Bank 19 Acquired by JPM 3/17/2008
Lehman Brothers LEH Inv Bank 41 Bankruptcy 9/15/2008
Merrill Lynch MER Inv Bank 82 Acquired by BAC 9/15/2008
Wachovia Bank WB Com Bank 115 Acquired by WFC 10/3/2008
Fig. 6. Net Total Directional Connectedness of Troubled Financial Firms. Net total directional connectedness for firm i is ‘‘from i to others’’ less ‘‘from others to i’’.
banks that ceased to exist, with information on their stock tickers,
market capitalization before and after the crisis, and critical dates
during the crisis.

We present net total directional connectedness plots for AIG,
Wachovia, Merrill Lynch, Lehman Brothers, Morgan Stanley and
Bear Stearns in Fig. 6.32 Let us spell out the most important
observation in Fig. 6 upfront: even though it was the troubles of
the investment banks that were followed the most throughout the
crisis, Wachovia Bank is the one that had the highest net total and
pairwise volatility connectedness in the climactic months of the
second half of 2008.

Coming back to the four troubled investment banks, it was true
that they had high net connectedness on several occasions as the
global financial crisis unfolded steadily in 2007 and 2008. To start
with the most vulnerable of the top five investment banks, the net
volatility connectedness of Bear Stearns’ stock was not sizable in

32 It is worth noting that connectedness measurements generally will not, and
should not, be robust to the choice of reference universe. Hence, given a decision
as to the x to be examined, a second important issue is precisely which (and hence
how many) x’s to use. For example, in this paper’s analysis of individual financial
institution equity return volatilities, we intentionally use only the largest firms.
In addition, note that our reference universe will change with the ‘‘births’’ and
‘‘deaths’’ of financial firms. Births happen, for example, when a firm goes public, as
with Goldman Sachs in 1999, and deaths happen when firms go bankrupt, as with
Lehman Brothers in 2008.
the run-up to its takeover by J.P. Morgan on March 17, 2008, but it
increased substantially to 109% on March 14 and 83% on March 17
(see Fig. 6).

Viewed as the most vulnerable investment bank after Bear
Stearns, Lehman Brothers’ net directional connectedness during
the liquidity crisis of August 2007 reached 80%. It also generated
close to 57% net directional connectedness on the day Bear Stearns
was taken over by J.P. Morgan (Fig. 6). Furthermore, its net
directional connectedness stayed around 20% for almost three
months after the demise of Bear Stearns. From early June till
early August 2008 Lehman Brothers stayed as a net receiver of
volatility shocks. This status, however, did not last for long. Lehman
again became one of the front runners in terms of net directional
connectedness (close to 60%) in the first 20 days of August.

On Friday, September 12, 2008, just one day before the critical
weekend, Lehman Brothers was not at the center stage in terms
of volatility connectedness; its net total directional volatility
connectedness was less than 20% (see Fig. 6). Markets were
still expecting another government-orchestrated rescue operation.
Only after the announcement of its bankruptcy on the morning of
September 15 did Lehman Brothers’ stock move to center stage
in the crisis and generated substantial volatility connectedness,
with a net total directional connectedness of 96% (see Fig. 6). Its
net pairwise connectedness with five financial stocks was in the
top percentile (another five were in the top five percentiles and
two in the top ten percentiles) of all the net pairwise volatility
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(a) Sep. 12, 2008. (b) Sep. 15, 2008.

(c) Sep. 16, 2008. (d) Sep. 17, 2008.

Fig. 7. Net Pairwise Directional Connectedness During the Lehman Bankruptcy. Notes: we show themost important directional connections among the pairs of sixteen bank
stocks on each day. Black, red and orange links (black, gray and light gray when viewed in grayscale) correspond to the first, fifth and tenth percentiles of all net pairwise
directional connections from June 1 to December 31, 2008. Node size indicates stockmarket capitalization. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
connectedness that took place between June 1 and December
31 of 2008 (Fig. 7(b)). Lehman Brothers’ net pairwise directional
connectedness increased substantially in the last two trading days
of the stock, September 16 and 17 (see Fig. 7(c) and (d)).

As we have already emphasized above in Fig. 6, among the six
troubled banks Wachovia was the one that had the highest net
directional connectedness with other stocks.Wachovia’s problems
had already been known in 2007, yet the markets learned that
they were actually worse than previously known when the bank
announced that it incurred a loss of $8.9 billion in the second
quarter of 2008. In themonth of June, long before the climaxmonth
(September 15–October 15) of the financial crisis,Wachovia’s stock
came under heavy pressure and its net directional connectedness
(see Fig. 6) increased substantially to reach 250% in mid-July. On
October 3, Wachovia was sold to Wells Fargo.

6. Concluding remarks

Schweitzer et al. (2009) provide an insightful description of the
challenges of financial network modeling:
‘‘In the complex-network context, ‘links’ are not binary (ex-
isting or not existing), but are weighted according to the eco-
nomic interaction under consideration. . . . Furthermore, links
represent traded volumes, invested capital, and so on, and their
weight can change over time’’. [p. 423]

We hope to have successfully confronted the issues raised by
Schweitzer et al., proposing connectedness measures at all levels
– from system-wide to pairwise – that are rigorous in theory
and readily implemented in practice, that capture the different
strengths of different connections, and that capture time-variation
in connectedness. Our approach effectively marries VAR variance-
decomposition theory and network topology theory, recognizing
that variance decompositions of VARs form weighted directed
networks, characterizing connectedness in those networks, and in
turn characterizing connectedness in the VAR.

We have emphasized the usefulness of ‘‘connectedness think-
ing’’ for risk measurement and management, but it has risk mea-
surement/management uses beyond those that we emphasized.
For example, because connectedness is linked to MES and CoVar,
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it is implicitly also linked to the idea of stress testing, because
the conditioning in MES and CoVaR amounts to conditioning on
stress scenarios. Moreover, connectedness may find many other
uses, in areas as seemingly diverse as asset pricing (Which risks
are truly systematic and hence should be priced?), portfolio man-
agement (How best to assess and manage portfolio concentra-
tion/diversification dynamically), and policy (Which banks to bail
out?Whichmergers to approve?).33 Moreover,much remains to be
done even within the confines of risk measurement, not least re-
lating our connectedness measures to others, some of which have
received attention such as the equi-correlation measure of Engle
and Kelly (2012), and some of which have not yet received atten-
tion but appear quite natural, such as the (time-varying) fraction
of variation explained by the first principal component.

We see our paper as part of a vibrant emergent literature us-
ing network perspectives in economic contexts, and introducing
economic perspectives in network contexts. Leading examples in-
clude Acemoglu et al. (2010); Adamic et al. (2010); Allen et al.
(2012), and Billio et al. (2012). Indeed Billio et al. (2012) is quite
a close relative, using pairwise Granger-causality to characterize
network structure. The Granger-causal approach is in some re-
spects less appealing than ours (e.g., it is directional but ex-
clusively pairwise and unweighted, testing zero vs. nonzero
coefficients, with arbitrary significance levels, and without track-
ing the magnitude of non-zero coefficients), and in other respects
more appealing (e.g., there is no need for identifying assumptions,
which are inescapable in variance-decomposition and impulse-
response analyses), and the two are surely complements rather
than substitutes. In any event it seems clear that the network and
multivariate time series literatures have much to learn from each
other, and that their blending may have much to contribute to the
successful measurement of financial economic risks.
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